Reduce downtime, reduce maintenance costs and improve operational effectiveness

This solution provide predictive capability to forecast failure and determine remaining useful life. Current prescriptive rule based solutions are unable to maximize equipment capacity. Preventive Maintenance ML uses Google Cloud BigQuery, Kubeflow and CMLE as key solution components.

This AI solution focuses on identifying patterns in both sensor and yield data that indicate changes in equipment condition. It leverages machine learning and predictive analytics to determine the remaining value of assets and accurately determine when a manufacturing plant, machine, component or part is likely to fail, and thus needs to be replaced.


Benefits of Preventive Maintenance ML Our solutions help you maximize your equipment efficiency and capacity to accelerate your journey to the Factory of the Future.

Reduce Downtime

Google’s IoT core, Google Cloud machine learning models leverage sensors that take in data from sound vibration, noise, data signals, temperature, and visual signals to identify and predict replacement. 

Reduce Maintenance Costs

Plan ahead your operational costs by predicting whether equipment will fail in a given period or not.


Pluto7’s Preventive Maintenance solution makes that possible, improving your production efficiency from 45% to 80% while reducing your operational costs. 

Improve Operation Efficiency

Preventive Maintenance ML not only provides cost savings, but it enables new business models.


Powered by Google Cloud’s robust Infrastructure, our next-gen solution makes sure your operations, equipment and ultimately your supply chain are running smoothly.

Customer Stories

Talk to an Expert

Transform your business by leveraging the power of Machine Learning Artificial Intelligence, Analytics, and IoT solutions.

Contact Us